U0 PortNop() {//Innoculous (reads IRQ Mask) which should take fixed time //because it's an ISA-bus standard. It takes 1.0uS-2.0uS. InU8(0x21); } U16 EndianU16(U16 d) {//Swap big<-->little endian. I64 res=0; res.u8[1]=d.u8[0]; res.u8[0]=d.u8[1]; return res; } U32 EndianU32(U32 d) {//Swap big<-->little endian. I64 res=0; res.u8[3]=d.u8[0]; res.u8[2]=d.u8[1]; res.u8[1]=d.u8[2]; res.u8[0]=d.u8[3]; return res; } I64 EndianI64(I64 d) {//Swap big<-->little endian. U64 res; res.u8[7]=d.u8[0]; res.u8[6]=d.u8[1]; res.u8[5]=d.u8[2]; res.u8[4]=d.u8[3]; res.u8[3]=d.u8[4]; res.u8[2]=d.u8[5]; res.u8[1]=d.u8[6]; res.u8[0]=d.u8[7]; return res; } I64 BCnt(I64 d) {//Count set bits in I64. I64 res=0,i; for (i=0;i<8;i++) res+=set_bits_table[d.u8[i]]; return res; } U0 IntCore0TimerHndlr(CTask *) {//Called from IntCore0TimerHndlr I64 i; if (mp_cnt>1) while (LBts(&sys_semas[SEMA_SYS_TIMER],0)) PAUSE lock cnts.jiffies++; cnts.timer+=SYS_TIMER0_PERIOD+1; LBtr(&sys_semas[SEMA_SYS_TIMER],0); for (i=1;i<mp_cnt;i++) MPInt(I_TIMER,i); OutU8(0x20,0x20); //Acknowledge PIC Interrupt } I64 SysTimerRead() {//System timer count with overflow already handled. I64 i,res; PUSHFD CLI if (mp_cnt>1) while (LBts(&sys_semas[SEMA_SYS_TIMER],0)) PAUSE OutU8(0x43,0); //Latch Timer0 if ((i=InU8(0x40)+InU8(0x40)<<8)==SYS_TIMER0_PERIOD) { if (InU8(0x20) & 1) i=-1; } res=cnts.timer+SYS_TIMER0_PERIOD-i; LBtr(&sys_semas[SEMA_SYS_TIMER],0); POPFD return res; } I64 HPET() { //Get high precision event timer. return *(dev.uncached_alias+HPET_MAIN_CNT)(I64 *); } I64 TimeStampFreqCal() { static I64 time_stamp_start=0,timer_start=0,HPET_start=0; I64 i; if (time_stamp_start) { PUSHFD CLI if (HPET_start) { cnts.time_stamp_freq=cnts.HPET_freq*(GetTSC-time_stamp_start); i=HPET-HPET_start; } else { cnts.time_stamp_freq=SYS_TIMER_FREQ*(GetTSC-time_stamp_start); i=SysTimerRead-timer_start; } if (!i) AdamErr("Timer Cal Error"); else { cnts.time_stamp_freq/=i; cnts.time_stamp_kHz_freq=cnts.time_stamp_freq/1000; cnts.time_stamp_calibrated=TRUE; } POPFD } PUSHFD CLI if (cnts.HPET_freq) { timer_start=0; HPET_start=HPET; } else { timer_start=SysTimerRead; HPET_start=0; } time_stamp_start=GetTSC; POPFD return cnts.time_stamp_freq; } F64 tS() {//Time since boot in seconds as a float. if (cnts.HPET_freq) return ToF64(HPET-cnts.HPET_initial)/cnts.HPET_freq; else return SysTimerRead/ToF64(SYS_TIMER_FREQ); } Bool Blink(F64 Hz=2.5) {//Return TRUE, then FALSE, then TRUE at given frequency. if (!Hz) return 0; return ToI64(cnts.jiffies*2*Hz/JIFFY_FREQ)&1; } U0 Busy(I64 uS) {//Loosely timed. I64 i; if (cnts.HPET_freq) { i=HPET+cnts.HPET_freq*uS/1000000; while (HPET<i); } else for (i=0;i<uS;i++) PortNop; } U0 SleepUntil(I64 wake_jiffy) {//Not for power-saving. It is to make a program pause without hogging the CPU. Bool old_idle=LBts(&Fs->task_flags,TASKf_IDLE); Fs->wake_jiffy=wake_jiffy; Yield; LBEqu(&Fs->task_flags,TASKf_IDLE,old_idle); } U0 Sleep(I64 mS) {//Not for power-saving. It is to make a program pause without hogging the CPU. if (!mS) Yield; else SleepUntil(cnts.jiffies+mS*JIFFY_FREQ/1000); } F64 Ona2Freq(I8 ona) {//Ona to freq. Ona=60 is 440.0Hz. if (ona==ONA_REST) return 0; else return 440.0/32*2.0`(ona/12.0); } I8 Freq2Ona(F64 freq) {//Freq to Ona. 440.0Hz is Ona=60. if (freq>0) return ClampI64(12*Log2(32.0/440.0*freq),ONA_REST+1,I8_MAX); else return ONA_REST; } U0 Snd(I8 ona=ONA_REST) {//Play ona, a piano key num. -128 means rest. I64 period; CSndData *d; if (!Bt(&sys_semas[SEMA_MUTE],0) && !LBts(&sys_semas[SEMA_SND],0)) { //Mutex. Just throw-out if in use if (ona<=ONA_REST) { snd.ona=ona; OutU8(0x61,InU8(0x61)&~3); } else if (ona!=snd.ona) { snd.ona=ona; period=ClampI64(SYS_TIMER_FREQ/Ona2Freq(ona),1,U16_MAX); OutU8(0x43,0xB6); OutU8(0x42,period); OutU8(0x42,period.u8[1]); OutU8(0x61,3|InU8(0x61)); } if (!IsDbgMode && snd.record) { d=ACAlloc(sizeof(CSndData)); d->ona=ona; d->time=tS; QueIns(d,snd.record_head.last); } LBtr(&sys_semas[SEMA_SND],0); } } U0 SndRst() {//Fix stuck sound. if (Bt(&sys_semas[SEMA_SND],0)) { Sleep(1); if (Bt(&sys_semas[SEMA_SND],0)) { Sleep(1); LBtr(&sys_semas[SEMA_SND],0); } } Snd; } U0 Beep(I8 ona=62,Bool busy=FALSE) {//Make beep at given ona freq. Snd(ona); if (busy) Busy(500000); else Sleep(500); Snd; if (busy) Busy(200000); else Sleep(200); } Bool Mute(Bool val) {//Turn-off sound. Bool res; if (val) { PUSHFD CLI Snd; res=LBts(&sys_semas[SEMA_MUTE],0); POPFD } else res=LBtr(&sys_semas[SEMA_MUTE],0); return res; } Bool IsMute() {//Return is-mute flag. return Bt(&sys_semas[SEMA_MUTE],0); } Bool Silent(Bool val=ON) {//Turn-off StdOut console text. (Not sound.) return LBEqu(&Fs->display_flags,DISPLAYf_SILENT,val); } Bool IsSilent() {//Return StdOut turned-off? return Bt(&Fs->display_flags,DISPLAYf_SILENT); } Bool SysDbg(Bool val) {//Set SysDbg bit you can use while debugging. return LBEqu(&sys_semas[SEMA_DEBUG],0,val); } Bool IsSysDbg() {//Return SysDbg bit. return Bt(&sys_semas[SEMA_DEBUG],0); } Bool Raw(Bool val) {//Set to direct scrn, BLACK & WHITE, non-windowed output mode. if (!val) VGAFlush; return !LBEqu(&Fs->display_flags,DISPLAYf_NOT_RAW,!val); } Bool IsRaw() {//Are we in BLACK & WHITE raw scrn mode? return !Bt(&Fs->display_flags,DISPLAYf_NOT_RAW); } Bool SingleUser(Bool val) {//Set single-user mode. return LBEqu(&sys_semas[SEMA_SINGLE_USER],0,val); } Bool IsSingleUser() {//Return single-user mode. return Bt(&sys_semas[SEMA_SINGLE_USER],0); } Bool DbgMode(Bool val) {//Set dbg-mode. return LBEqu(&sys_semas[SEMA_DBG_MODE],0,val); } Bool IsDbgMode() {//Return dbg-mode. return Bt(&sys_semas[SEMA_DBG_MODE],0); } U0 ProgressBarsRst(U8 *path=NULL) {//Reset all progress bars to zero. CallExtStr("ProgressBarsRegTf",path); MemSet(sys_progresses,0,sizeof(sys_progresses)); }